WANG KEYONG

发布者:唐子夏发布时间:2024-05-13浏览次数:10

基本信息Basicinformation

姓名NameKeyongWang

学历EducationBackgroundPh.D.

职称ProfessionalTitleAssociateProfessor

职务Postnone

研究方向ResearchInterests: High performance finite element method, 3D printing andmulti-printer cooperation

联系方式Contactdetails: k.y.wang@126.com

学术成果AcademicPublication:

[1]Keyong Wang, Junchen Zhou, Renyu Zeng. Hybrid Trefftz finite elementmethod for axisymmetric elasticity problems under torsion. MaterialsToday Communications, 2021, 27: 102420.

[2]Huan Liu, Keyong Wang, Qing Liu, Peichao Li. A hybridfundamental-solution-based finite element method for transient heatconduction analysis of two-dimensional orthotropic materials.International Journal of Computational Methods, 2021, 18(4): 2150003.

[3]Wenkai Qiu, Keyong Wang, Peichao Li. Hybrid finite element analysisof heat conduction in orthotropic media with variable thermalconductivities. International Journal of Applied Mechanics, 2020,12(9): 2050098.

[4]Zhengnan Xia, Keyong Wang, Fengyan Ge. Special hole elements forsimulating the heat conduction in two-dimensional cellular materials.Composite Structures, 2020, 246: 112383.

[5]Ze She, Keyong Wang, Peichao Li. Thermal analysis of multilayercoated fiber-reinforced composites by the hybrid Trefftz finiteelement method. Composite Structures, 2019, 224: 110992

[6]Ze She, Keyong Wang, Huan Liu. Thermal analysis of ellipticalfiber-reinforced composites by the hybrid Trefftz finite elementmethod. International Journal of Heat and Mass Transfer, 2019, 144:118596.

[7]Qijia Wang, Keyong Wang, Peichao Li. Forced convective heat and masstransfer in a bidisperse porous parallel-plate channel with a firstorder reaction on the wall. Thermal Science and Engineering Progress,2019, 13: 100369.

[8]Ze She, Keyong Wang, Peichao Li. Hybrid Trefftz polygonal elementsfor heat conduction problems with inclusions/voids. Computers &Mathematics with Applications, 2019, 78(6): 1978-1992.

[9]Junchen Zhou, Keyong Wang, Peichao Li. A hybrid fundamental-solution-based 8-node element for axisymmetric elasticity problems.Engineering Analysis with Boundary Elements, 2019, 101: 297-309.

[10]Junchen Zhou, Keyong Wang, Peichao Li. Hybrid fundamental solutionbased finite element method for axisymmetric potential problems witharbitrary boundary conditions. Computers & Structures, 2019, 212:72-85.

[11]Junchen Zhou, Keyong Wang, Peichao Li, Xiaodan Miao. Hybridfundamental solution based finite element method for axisymmetricpotential problems. Engineering Analysis with Boundary Elements,2018, 91: 82-91.

[12]Keyong Wang, Peichao Li. Forced convection in bidisperse porous mediaincorporating viscous dissipation. Applied Thermal Engineering, 2018,140: 86-94.

[13]Keyong Wang, Peichao Li. Basics of Trefftz-type finite elementmethods. Beijing: China Railway Publishing House Co. Ltd., 2019.